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Abstract: Glutamine, the most abundant free amino acid in the human body, is a major substrate
utilized by intestinal cells. The roles of glutamine in intestinal physiology and management of
multiple intestinal diseases have been reported. In gut physiology, glutamine promotes enterocyte
proliferation, regulates tight junction proteins, suppresses pro-inflammatory signaling pathways,
and protects cells against apoptosis and cellular stresses during normal and pathologic conditions.
As glutamine stores are depleted during severe metabolic stress including trauma, sepsis, and
inflammatory bowel diseases, glutamine supplementation has been examined in patients to improve
their clinical outcomes. In this review, we discuss the physiological roles of glutamine for intestinal
health and its underlying mechanisms. In addition, we discuss the current evidence for the efficacy
of glutamine supplementation in intestinal diseases.
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1. Introduction

Glutamine is the most abundant amino acid in human blood, skeletal muscle, and the free
amino acid pool [1]. It plays physiologically important roles in various metabolic processes: as an
intermediary in energy metabolism, and as a substrate for the synthesis of peptides and non-peptides
such as nucleotide bases, glutathione, and neurotransmitters [2–4]. Additionally, glutamine contributes
to the detoxification of ammonia and systemic acid-base balance [5]. The involvement of glutamine
metabolism in immune systems [1,6,7] and in cancer cells [8–10] has been documented in the past two
decades. Moreover, glutamine metabolism has direct relevance to clinical medicine. This was initially
highlighted when glutamine, classically a non-essential amino acid, was considered to be conditionally
essential during certain catabolic states, such as trauma or sepsis [11]. The theory of “conditionally
essential” glutamine during illness was based on observations that intestinal, renal, and immune cells
utilize large amounts of glutamine, exceeding the endogenous glutamine production [12,13], and that
plasma and muscle glutamine levels are markedly reduced in these conditions [14].

Among the various tissues using glutamine at high rates, the intestine utilizes about 30% of total
glutamine [15], indicating that it is a key nutrient for the intestine. Studies in healthy adults have
demonstrated that three quarters of enterally provided glutamine is absorbed into the splanchnic
tissues, and most of the absorbed glutamine is metabolized within the intestine [16,17]. One-fourth
of the plasma glutamine is taken up by the small intestine when it passes the organ [18]. It has
been reported that the intestine competes with other tissues for glutamine from the body amino
acid pool and dietary sources [19]. Glutamine metabolism in the intestine has been intensively
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studied. Its functions include maintaining nucleotide metabolism and intestinal barrier function,
modulation of inflammation, and regulating stress responses and apoptosis [20–22]. Concomitantly,
the efficacy of glutamine supplementation has been tested in humans and animal models with intestinal
diseases [23–25]. This review aims to discuss the role of glutamine in the intestine, and to summarize
current evidence for the clinical efficacy of glutamine supplementation in intestinal diseases, especially
inflammatory bowel diseases (IBDs).

2. Roles of Glutamine in the Intestine

2.1. Tissue Integrity

The mammalian intestinal lumen is lined with a single layer of epithelial cells [26]. As these
cells are renewed every four to five days, a continuously high level of cell proliferation is required to
maintain homeostasis [27]. In general, cell proliferation is regulated by a number of signaling pathways
and hormones such as growth factors. When proliferation is activated by these signals, crypt-residing
intestinal stem cells differentiate into specialized epithelial cell types, including enterocytes, goblet cells,
paneth cells, and enterocytes, which enables the maintenance of normal intestinal tissue integrity [28].

Glutamine influences a number of signaling pathways that regulate cell cycle regulation and
proliferation. Mitogen-activated protein kinases (MAPKs) are protein kinases that orchestrate a number
of cell functions, including cell proliferation and differentiation [29]. Rhoads et al. demonstrated
that glutamine is required for intestinal cell proliferation by activating multiple MAPKs, including
extracellular signal-regulated kinases (ERK1/2) and c-Jun N-terminal kinases (JNK1/2), in the rat
intestinal mucosal cell line, IEC-6 [30] (Figure 1). Additionally, glutamine contributes to intestinal
cell proliferation by augmenting the effects of growth factors such as epidermal growth factor (EGF),
insulin-like growth factor-I (IGF-I), and transforming growth factor-α (TGF-α). Restriction of glutamine
in cell culture media resulted in impaired EGF-stimulation of DNA, RNA, and protein synthesis and
cell replication in IEC-6 cells [31]. Consumption of glutamine-enriched diets significantly enhanced
IGF-I-mediated DNA and protein synthesis in a rat model of short bowel syndrome [32]. In a
porcine model of ischemia, glutamine administration enhanced the action of TGF-α on mucosal
cell proliferation [33].

Tight junctions, consisting of various proteins, seal adjacent epithelial cells to produce a physical
barrier between epithelial and endothelial cells [34]. Tight junctions are dynamic rather than static
structures. Indeed, tight junctions constantly remodel their structures with a relatively high rate
of turnover to interact with external stimuli by which they control the entry of ions, nutrients, and
water [35]. In addition, tight junctions maintain intestinal integrity, which prevents pathogens and
toxins from entering the intestinal lumen [36]. There are four types of transmembrane components
of tight junctions, including claudins, occludin, tricellulin, and junctional adhesion molecules [37].
In response to various physiological stimuli and signal pathways, tight junctions modulate the
transport of luminal molecules into mucosal cells by adjusting their tightness [38]. These signaling
molecules are protein kinase C, MAPKs, and myosin light chain kinases (MLCK). Activation of protein
kinase C resulted in the upregulation of occludin, zonula occudens (ZO)-1, ZO-2, and claudin 1 in
primary human epithelial cells, leading to enhancing transepithelial electrical resistance [39]. MAPKs
could directly interact with the C-terminal tail of occludin, which mediates the prevention of hydrogen
peroxide-induced disruption of tight junctions [40]. Furthermore, MLCK-induced phosphorylation of
myosin light chain regulated tight junction permeability in Caco-2 cells [41,42].
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Figure 1. Proposed action mechanisms of glutamine in intestinal cells. Glutamine maintains intestinal
tissue integrity via promoting enterocyte proliferation, activation of mitogen-activated protein kinases
(MAPKs) (ERK1/2, JNK1/2), optimizing the actions of growth factors (epidermal growth factor (EGF),
insulin-like growth factor (IGF)-I, transforming growth factor (TGF)-α), and inducing expression of
tight-junction proteins (claudin-1, claudin-4, occludin, zonula occludens (ZO)-1, ZO-2, and ZO-3).
Pro-inflammatory signaling pathways such as the nuclear factor-κB (NF-κB) and signal transducers
and activators of transcription (STAT) pathways are inhibited by glutamine. Glutamine suppresses
extensive apoptosis by participating in the synthesis of glutathione (GSH) and by regulating heat shock
factor (HSF)-1-mediated expression of heat shock proteins (HSPs). Glutamine ameliorates endoplasmic
reticulum (ER) stress and promotes autophagy by inhibiting the mechanistic target of rapamycin
(mTOR) pathway, thus protecting intestinal cells from stressful conditions. T bars mean inhibition
while arrows represent stimulation.

Multiple lines of evidence indicate that glutamine modulates the expression of tight junction
proteins. In the human colon carcinoma cell line Caco-2, glutamine deprivation markedly reduced
the expression of multiple tight junction proteins, including claudin-1, occludin, and ZO-1 [43].
Restriction of glutamine in cell culture media significantly increased epithelial cell permeability
in Caco-2 cells, as determined by multiple methods including transepithelial electrical resistance
(TER), tracer models using 14C-mannitol, and fluorescein isothiocyanate-dextran [44]. The addition of
glutamine in glutamine-deprived cells rescued the impaired barrier functions. In methotrexate-treated
Caco-2 cells, the addition of glutamine improved permeability along with increased ZO-1 and occludin
expressions [45]. By measuring TER and inulin flux, Seth et al. also reported that the addition of
glutamine prevented acetaldehyde-induced disruption of tight junctions and impaired paracellular
permeability [46]. Maintaining intestinal permeability by tight junction proteins has shown to be
beneficial for treatment of multiple intestinal pathologic conditions such as inflammatory bowel disease
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and celiac disease [47]. These studies suggest that glutamine supplementation may be beneficial for
individuals with an impaired gut permeability by enhancing the expression of tight junction proteins.

Mechanistically, glutamine has been shown to influence a number of signaling pathways that
regulate the expression of tight junction components [48], although much of this process still
remains unclear. In the Caco-2 cells, deprivation of glutamine activated the phosphatidylinositol
3-kinase (PI3K)/Akt pathway, which led to a reduction in claudin-1 expression and TER [49]. On
the contrary, glutamine supplementation reduced the activation of the PI3K/Akt pathway, which
reversed claudin-1 expression in the cells, suggesting that glutamine supplementation regulates
phosphorylation states of tight junction proteins. Interestingly, normal formation of tight junction is
controlled by phosphorylation of occludin and ZO-1 [50–52]. Therefore, glutamine-mediated tight
junction maintenance is in part mediated by phosphorylation of tight junction proteins. Wang et al.
showed that glutamine activated calcium/calmodulin-dependent kinase 2-AMP-activated protein
kinase signaling in porcine jejunal enterocytes [53]. They also reported that glutamine induced the
expression of ZO-1, ZO-2, and ZO-3 and caused greater distribution of claudin-1, claudin-4, and ZO-1
at the plasma membranes [53]. Dokladny et al. reported that heat shock-induced activation of heat
shock factor-1 (HSF-1) induced nuclear translocation of HSF-1 and expression of occluding in Caco-2
cells [54].

2.2. Inflammatory Pathway

Inflammation has been shown to be a cause of intestinal diseases, such as ulcerative colitis, Crohn’s
disease, and colorectal cancer [55]. Therefore, treatment of intestinal inflammation is important to
target these diseases. Several lines of evidence indicate that glutamine has an anti-inflammatory
property by influencing a number of inflammatory signaling pathways, including the nuclear factor
κB (NF-κB) and signal transducer and activator of transcription (STAT) pathways [56].

The transcription factor NF-κB regulates a number of immune responses [57]. During the
early phase of infection, it activates various genes to boost the inflammatory reaction. NF-κB is
a multiprotein complex composed of five members of the Rel family: p50, p52, p65, RelB, and c-Rel.
Under steady-state conditions, NF-κB resides in the cytoplasm and is maintained inactive by a family
of inhibitors, designated inhibitor of κB (IκB). In response to various extracellular stimuli, IκB kinase
phosphorylates IκB proteins, triggering their degradation and release from NF-κB, which thus becomes
active. Active NF-κB complex is translocated into the nucleus where it induces the expression of genes
harboring NF-κB-binding elements, such as interleukin-6 (Il-6) and tumor necrosis factor-α (Tnf-α). During
inflammatory status, productions of inflammatory cytokines IL-6 and TNF-α are highly elevated,
which stimulates immune response by activating multiple target cells such as antigen-presenting
cells and T cells and by inducing acute-phase proteins [58]. Glutamine has been shown to suppress
NF-κB pathway activation. Administration of glutamine via intraperitoneal injection or oral gavage
suppressed NF-κB activation in rodent models of colitis [59,60] and in lipopolysaccharide (LPS)-treated
piglet enterocytes [61]. Mechanistically, NF-κB suppression by glutamine was associated with increased
expression of cellular heat shock proteins (HSPs) such as HSP25 and HSP70, which are induced by
HSF-1 [60]. The HSF-1-mediated heat shock response has been shown to inhibit NF-κB activation and
NF-κB-dependent gene expression. This hypothesis was supported by a marked increase in NF-κB
activation in embryonic fibroblast from HSF-1-null mutant mice due to lack of HSPs expression [62].
These studies suggest that the anti-inflammatory effect of glutamine, in part, may be related to HSF-1
activation and suppression of NF-κB-mediated inflammatory cytokine expression. Additionally,
glutamine influences IκB stability. In LPS-treated Caco-2 cells, deprivation of glutamine reduced
the expression of IκBα, triggering elevated NF-κB binding to DNA as well as increased expression
of inflammatory cytokine interleukin-8 (IL-8) [63]. In human ileocecal adenocarcinoma HCT-8 cells,
pre-treatment with glutamine reduced the level of IκBα degradation and production of IL-8 during
TNF-α-induced inflammation [64]. In support of these findings in vitro, Kretzmann et al. showed
that glutamine supplementation for seven days significantly reduced IκBα degradation, leading to
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suppression of NF-κB activation in a rat colitis model [65]. Since production of IL-8, a cytokine that
stimulates migration of neutrophils to inflammatory sites, was influenced by glutamine status [63,64],
glutamine-mediated IL-8 regulation could be an important event for targeting intestinal inflammation.

STAT proteins are transcription factors that modulate the immune system, cellular proliferation,
and development [66]. They have been extensively studied for their roles in regulating inflammation
by inducing the expression of cytokines including IL-6 [67]. In rat colitis models, glutamine
administration via the rectal route reduced the phosphorylation of STAT1 and STAT5, indicating
that glutamine influences STAT signaling activation [65]. In LPS-treated Caco-2 cells, glutamine
depletion upregulated STAT4, whereas glutamine supplementation downregulated STAT4 expression
and IL-8 production [68]. Therefore, the anti-inflammatory effect of glutamine may be contributed to
by inhibiting STAT activation and by inhibiting expression of inflammatory cytokines such as IL-6 and
IL-8 in intestinal tissues.

Nitric oxide (NO) is synthesized by multiple cells and modulates a variety of cellular signaling
pathways, including inflammatory responses [69]. During intestinal inflammation, NO may play a
dichotomous role, as both beneficial and harmful effects of NO have been observed [70]. Glutamine is
an important regulator of NO synthesis [71,72]. Houdijk et al. reported that the level of whole body
plasma nitrate, the stable end-product of NO production, was reduced in rats fed a glutamine-enriched
diet [73]. Similarly, in rats with intestinal ischemia-reperfusion injury, glutamine-enriched diet reduced
mucosal expression of inducible NO synthase, an inflammatory enzyme, and decreased the plasma
NO concentration [74].

Since sustained activation of inflammatory signaling pathways and prolonged production of
pro-inflammatory cytokines are critical in the development and progress of intestinal inflammatory
diseases, there has been efforts to suppress the production of inflammatory mediators to treat patients
with intestinal inflammatory diseases including IBD [75]. Therefore, based on the in vitro and in vivo
studies mentioned above, glutamine supplementation could be one promising candidate for treating
intestinal inflammatory disorders by inhibiting activation of NF-κB and STAT, and suppressing
expression of inflammatory cytokines such as IL-6, TNF-α, and IL-8, and inflammatory enzyme
inducible NO synthase.

2.3. Apoptosis and Cellular Stresses

As intestinal epithelial cells have a turnover rate of four to five days, it is critical for these cells to
maintain a fine balance between proliferation and apoptosis for normal function [76]. Spontaneous
apoptosis in intestinal epithelia is essential for maintaining its normal architecture [77]. However,
a number of cellular stresses induced by exogenous agents or by intracellular stimuli including
endotoxemia, nutrient deprivation, and lack of growth factor can disturb the balance between
proliferation and apoptosis. This imbalance between proliferation and apoptosis triggers intestinal
pathologic conditions due to sustained apoptotic cell death [78–81]. Indeed, loss of epithelial cells
in ulcerative colitis and bacterial infection mainly occurs by increased apoptosis in crypts [82,83].
Intestinal inflammatory disorders such as celiac disease and nematode infections are highly associated
with increased apoptosis of intestinal epithelial cells [84,85]. Even though the differentiated enterocytes
undergo apoptosis which maintains normal gut epithelial function, dysregulated apoptosis is seen
in a number of pathological conditions in the gastrointestinal tract. Therefore, it is critical to
inhibit apoptosis of intestinal epithelial cells to prevent the intestinal pathologic conditions [86].
Glutamine has been shown to display anti-apoptotic properties in intestine. In rat intestinal epithelial
(RIE-1) cells, glutamine deprivation resulted in apoptosis [87]. Similarly, glutamine supplementation
effectively reduced toxin-induced apoptosis in human intestinal epithelial T84 cells [88], and sodium
laurate-induced apoptosis in RIE-1 cells [89], collectively suggesting that glutamine is critical to
suppressing apoptosis.

Further studies have demonstrated the mechanisms underlying the anti-apoptotic capacity of
glutamine. First, as a precursor for glutathione (GSH), glutamine prevents apoptosis by maintaining
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normal cellular redox status. Along with cysteine and glycine, glutamate converted from glutamine
produces GSH, an important cellular antioxidant [90]. GSH is present in the cell in both reduced
and oxidized forms (GSSG), and the ratio of GSH to GSSG determines the cellular redox potential.
Because depletion of GSH induces apoptosis due to excessive oxidative stress [91], normal glutamine
metabolism plays a critical role in preventing apoptosis by providing glutamate required for
maintaining normal GSH/GSSG ratio.

Secondly, glutamine regulates caspase activation. Caspases are a family of protease enzymes that
play important roles in inducing apoptosis [92]. Basically, they are present as a proenzyme, but various
stimuli can activate the enzymes through cleavage. In RIE-1 cells, glutamine-deprived cells showed
significantly higher caspase-3 activity along with a higher level of apoptosis [93]. Administration of
glutamine reduced caspase-3 activity in neonatal piglet enterocytes [61] as well as caspase-8 activity in
T84 cells [88].

In addition, glutamine enhances the expression of heat shock proteins (HSPs) [94]. HSPs have
been reported to modulate apoptotic cell death by acting as a molecular chaperone, allowing the cells to
adapt to stressful conditions [95]. In rats with sepsis, glutamine administration significantly increased
the expression of HSP-70 and HSP-25, possibly via increased phosphorylation of heat shock factor
(HSF)-1 [96]. The increased expression of HSPs via glutamine supplementation markedly improved
the survival rate of rats with sepsis. Ropeleski et al. reported that glutamine enhanced HSF-1-mediated
gene expression of Hsp-72 during heat shock in IEC-18 and H4 intestinal cells [97]. On the contrary,
glutamine-deficient conditions reduced gene expression of Hsp-72, which resulted in higher caspase-3
activity and apoptotic cell death.

The protective effect of glutamine is also attributed to its role in modulating cellular stress
responses such as endoplasmic reticulum (ER) stress and autophagy. The ER is an organelle responsible
for protein synthesis, folding, and modification. A number of pathologic conditions, including IBD,
disrupt ER function, resulting in ER stress [98]. As extensive ER stress triggers sustained apoptosis
and further insults, attenuating ER stress is critical for cell protection and survival. In rats with
colitis, administration of glutamine markedly reduced the activation of ER stress markers, such as
glucose responsive protein 78, CCAAT/enhancer binding protein (C/EBP) homologous protein, and
caspase-12 [99]. These results show that glutamine supplementation reduces ER stress and apoptosis.
Supporting these observations, glutamine treatment reduced the activation of ER stress in Caco-2 cells
treated with pharmacological ER stress inducers.

Autophagy is a catabolic process activated during a number of metabolic stress conditions, such as
nutrient deprivation [100]. Upon activation, autophagy breaks down cellular organelles and proteins
to supply them as an energy source. It has been shown that autophagy provides a protective effect
against intestinal pathologic conditions. Autophagy-related 16-like 1 (Atg16L1), a gene essential for
functional autophagosome, has been implicated in Crohn’s disease [101,102]. Saitoh et al. showed
that mice lacking Atg16L1 were more susceptible to induced acute colitis, supporting the importance
of autophagy to inhibit intestinal inflammation [103]. Furthermore, mutation of Atg5 and Atg7,
autophagy-related genes, in mouse intestinal epithelium resulted in increased production of TNF-α
and IL-1β following LPS administration [104]. Additionally, Paneth cells lacking Atg16L1, Atg5, or
Atg7 showed impaired secretion of antimicrobial proteins, which confer intestinal protection against
pathogens [105]. Since IBD pathogenesis is associated with dysfunction of Paneth cells [106], functional
autophagy is essential for intestinal homeostasis and preventing intestinal inflammation. Glutamine
has been reported to increase autophagy in intestinal epithelial cells. In Caco-2 and IEC-18 cells,
Sakiyama et al. reported that glutamine treatment augmented the number of autophagosomes as
well as the level of microtubule-associated protein light chain 3-phospholipid conjugates, which are
markers for autophagy activation [107]. As a result, the enhanced autophagy via glutamine treatment
suppressed intestinal apoptosis under stress conditions. The authors demonstrated that glutamine
regulates autophagy by influencing mechanistic target of rapamycin (mTOR) signaling. The mTOR
pathway integrates signals from nutrients status and growth factors to modulate multiple cellular
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processes, including autophagy [108]. In agreement with this finding, Van Der Vos et al. demonstrated
that glutamine synthetase is a target of forkhead box O3 (FOXO3), which is a transcription factor
activated during autophagy [109]. FOXO3-mediated glutamine synthesis resulted in mTOR inhibition,
which promoted autophagy activation and cellular survival.

3. Clinical Implications for Intestinal Diseases

Given the importance of glutamine in maintaining normal cellular functions, as discussed
above, it is not surprising that glutamine supplementation has been considered and examined in
the clinical setting, particularly in diseases implying impaired glutamine metabolism. A conditional
glutamine deficient status has been postulated in patients with acute critical illness. In these patients,
marked reduction in plasma glutamine concentration is possibly due to the consequence of muscle
wasting [14]. Regarding intestinal diseases, patients with Crohn’s disease display low plasma and
cellular glutamine concentrations, and reduced mucosal glutaminase activity [110]. These observations
led to the hypothesis that glutamine supplementation would improve clinical outcomes.

A number of experiments in animals with IBD demonstrated that glutamine supplementation
is able to protect the intestinal mucosa, raising the possibility of use of glutamine support in human
patients. In mice with dextran sulfate sodium-induced colitis, oral glutamine supplementation
(41.7 g/kg diet; 10 days) resulted in mitigated colonic inflammatory reactions [111] as well as increased
expression of small-intestinal intraepithelial γδ-T cells [112]. In dextran sulfate sodium-induced rats,
administration of glutamine (0.75 g/kg body weight (BW)/d; 7 days) by oral gavage increased HSP25
and HSP70, and reduced bleeding and diarrhea [60]. Rats with trinitrobenzene sulfonic acid-induced
colitis that received dietary glutamine supplementation (20 g/kg or 40 g/kg; 2 weeks) showed
reduced production of pro-inflammatory cytokines, including TNF-α and IL-8, bacterial translocation,
and inflamed lesions [113]. Oral glutamine supplementation (3% in drinking water) ameliorated
abdominal radiation-induced mucosal injury and reduced bacterial translocation in gut mucosa of
rats [114]. Injection of glutamine (0.75 g/kg BW) in mice with sepsis model ameliorated sepsis-induced
inflammatory reactions by modulating intestinal intraepithelial lymphocytes [115,116].

Based on these positive results in animal models, human studies have been conducted in an
attempt to support the efficacy of glutamine supplementation in improving disease status. However,
only a limited number of studies concluded that glutamine supplementation has a beneficial effect
in intestinal diseases. In a systematic review by García-de-Lorenzo et al., glutamine-enriched diets
were shown to improve immunologic aspects in trauma patients and to ameliorate mucositis in
post-chemotherapy patients [117]. The authors determined how much glutamine is required to observe
improved clinical outcomes: 21 g glutamine/day for 28 days for Crohn’s disease, and 42 g/day for
21 days for short bowel syndrome. In a randomized controlled trial, Benjamin et al. reported that
glutamine supplementation (0.5 g/kg BW; 2 months) in patients with Crohn’s disease in remission
phase reduced the intestinal permeability and morphology [118].

However, a number of studies did not observe any improved outcomes from glutamine
supplementation. In recent randomized and controlled trails, termed Scottish Intensive Care
Glutamine or Selenium Evaluative Trial (SIGNET), effects of a parental administration of glutamine
(0.1 to 0.2 g/kg BW/day) were evaluated in 500 patients with critical illness [119]. However, the
SIGNET study did not show any beneficial outcome of glutamine supplementation. More recently,
Reducing Death Due to Oxidative Stress (REDOXS), a randomized and controlled trial, examined
glutamine supplementation (0.6 to 0.8 g/kg BW/day) in 1223 critically ill patients [120]. Not only
was there no effect of glutamine supplementation on rates of organ failure or infectious complication,
but also patients who received enteral glutamine treatment showed a trend toward elevated rate of
death at 6 months. Similarly, glutamine supplementation on intestinal diseases do not clearly support
efficacy of glutamine supplementation. Akobeng et al. examined the effect of glutamine-enriched
polymeric diet (8 g/day for 4 weeks) in 18 children with active Crohn’s disease, and found no changes
in parameters tested, including intestinal permeability [121]. Similarly, no significant effect of oral
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glutamine supplements (21 g/day for 4 weeks) was observed in 14 Crohn’s disease patients [122].
In short bowel syndrome patients, six studies have examined the effect of glutamine support, but
no improvement in the surrogate parameters was found [123–128]. Although some studies showed
favorable effects, the clinical efficacy of glutamine supplementation in intestinal diseases remains a
controversial issue.

Alpers et al. pointed out limitations of current clinical studies on glutamine supplementation [129],
providing some clues for these inconsistent results. The first thing to consider is whether it is true that
humans are really glutamine deficient during the diseases. The “conditionally essential glutamine”
theory is still a prediction and is uncertain. Because the levels of amino acids including glutamine
dynamically and constantly are changed in tissues and plasma, and plasma levels do not always reflect
tissue levels, it is challenging to determine whether glutamine is conditionally essential. In addition,
the reduced plasma concentration during critical illness is not specific for glutamine, but it occurs for
most amino acids [129]. Parenteral glutamine supplementation in critically ill patients did not restore
muscle glutamine depletion of the patients, which raises a question for glutamine deficiency in the
patients [130]. Furthermore, plasma glutamine level in seriously ill patients did not predict mortality
of the patients [131], suggesting that plasma glutamine status may not be correlated with severity
of disease. Therefore, an effort to validate a glutamine deficiency state in the pathologic conditions
should be preceded before predicting clinical efficacy of glutamine supplementation.

Various experimental designs could have influenced the indefinite results of clinical studies.
First, glutamine was administered in two different ways: total parental nutrition and enteral nutrition.
Generally, it is stated that enteral nutrition is safer for prolonged period than parental nutrition, whereas
parental nutrition is often recognized as being better for achieving targeted calorie requirement,
especially in critically ill patients [132]. Route of administration influences the contribution of
glutamine [133]. In patients with acute ulcerative colitis, total enteral nutrition was shown to be
nutritionally effective as well as produce fewer complications compared to enteral nutrition [134].
Given total parenteral nutrition produces changes in intestinal morphology and function [135],
glutamine supplementation via parenteral nutrition might cause complications in intestine. Second, a
wide variety of dose, time, and mode of supplementation was used. Dose of glutamine used in the
studies varied up to 5-fold [121,122,136], and treatment period varied from 2 days [124] to 8 weeks [128].
As glutamine couples with alanine and glycine, glutamine complex with alanine and glycine is less
susceptible to degradation than free glutamine. Many studies used glutamine-containing dipeptides,
which might affect the discrepancy of outcomes. Third, a wide range of clinical courses of patients was
used in the studies. Short-term glutamine administration during a flare-up phase could give a greater
impact on outcomes than other phases. Additionally, a relatively small sample size showed greater
efficacy of glutamine supplementation in critically ill patients [137–139] and in IBD patients [117,118].
Therefore, a well-controlled clinical trial with a sufficiently sized population would be required to
determine the efficacy of glutamine supplementation in intestinal diseases.

4. Conclusions

In this review, we covered the roles of glutamine in the intestine, including the regulation of
enterocyte proliferation, maintenance of tight-junction proteins, modulation of inflammatory pathways,
such as NF-κB and STAT signaling, and protection against apoptosis and cellular stresses, which are
summarized in Figure 1. Although significant progress has been made in uncovering the functions of
glutamine, most of these are based on observational studies. Therefore, future research should focus
on the mechanisms underlying glutamine actions. Additionally, current data from clinical trials do not
support the use of glutamine supplementation in patients with intestinal diseases, despite in vitro and
animal model studies having shown significant beneficial effects. Thus, future human studies should
be more standardized to increase their power.
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